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SUMMARY

Data assimilation in a two-dimensional hydrodynamic model for bays, estuaries and coastal areas is
considered. Two different methods based on the Kalman filter scheme are presented. These include (1) an
extended Kalman filter in which the error covariance matrix is approximated by a matrix of reduced rank
using a square root factorisation (RRSQRT KF), and (2) an ensemble Kalman filter (EnKF) based on
a Monte Carlo simulation approach for propagation of errors. The filtering problem is formulated by
utilising a general description of the model noise process related to errors in the model forcing, i.e. open
boundary conditions and meteorological forcing. The performance of the two Kalman filters is evaluated
using a twin experiment based on a hypothetical bay region. For both filters, the error covariance
approximation sufficiently resolves the error propagation in the model at a computational load that is
significantly smaller than required by the full Kalman filter algorithm. Furthermore, the Kalman filters
are shown to be very robust with respect to defining the errors. Even in the case of a severely biased
model error, the filters are able to efficiently correct the model. In general, the use of coloured model
noise provides a numerically more efficient algorithm as well as a better performance of the filter. The
error covariance approximation in the RRSQRT KF is shown to be more efficient than the error
representation in the EnKF. For strongly non-linear dynamics, however, the EnKF is preferable.
Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In general, the application of numerical models is hampered by the lack of knowledge of, or
uncertainty related to, the physical parameters of the system, the initial and boundary
conditions, and the external forcing. Furthermore, the model itself may be erroneous due to
neglected or poorly described physical processes in the system equations and mathematical
approximations (e.g. unresolved subgrid scale motions). On the other hand, measurements will
always be sparse in both space and time, and hence will not be able to fully resolve the
dynamics of the system at all spatial and temporal scales of interest. Data assimilation is a
technique of combining any measurements of the state of the system with the model dynamics
in order to improve the knowledge of the system.
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Existing data assimilation methods have primarily been developed for use in numerical
weather prediction and open ocean models (see, e.g. review by Ghil and Malanotte-Rizzoli [1]).
In this paper, data assimilation in a numerical hydrodynamic model for bays, estuaries and
coastal areas is considered. Coupled numerical weather prediction and hydrodynamic models
are now used operationally for storm surge forecasting [2]. In this respect, data assimilation
techniques are adopted for real-time assimilation of water level measurements in order to
improve the initial state of the system prior to a forecast.

At present, two different classes of data assimilation methods are prevalent: variational and
sequential methods. Variational data assimilation consists of minimising a predefined cost
function that measures the difference between model output and measurements over a certain
time interval. A widely applied variational method is the adjoint method, which uses the model
dynamics as strong constraints in the formulation of the cost function [3]. In coastal area
modelling, the adjoint method has been applied for off-line estimation of model parameters [4].
A major drawback of the adjoint method, however, is the implicit assumption of a perfect
model. To include model errors, a weak constraint formulation of the cost function should be
adopted [5].

In sequential data assimilation, a recursive updating of the model solution is performed
during a forward integration where model output and measurements are weighted according to
the associated uncertainties. A classical sequential data assimilation method that is widely
applied in operational numerical weather predictions is optimal interpolation [6,7]. This
method has also been successfully applied in open ocean models [8]. However, since optimal
interpolation is based on predefined model error statistics, which are assumed time invariant
or are allowed to evolve according to a very simplified scheme, the updating procedure is not
consistent with the dynamics of the system. In coastal area modelling, the dynamics are
strongly influenced by the presence of land–sea boundaries and flooding and drying of tidal
areas, and hence, the dynamical properties of the data assimilation scheme become extremely
important.

The Kalman filter [9] is an efficient data assimilation method that explicitly accounts for the
dynamic propagation of errors in the model. For linear models with known statistics of the
system and measurement errors, the Kalman filter provides an optimal estimate of the state of
the system, in terms of minimum estimation error covariance. In the case of non-linear model
dynamics, an approximate Kalman filter algorithm (extended Kalman filter) in which the error
propagation is based on a statistical linearisation of the model equation can be adopted. A
major drawback of the Kalman filter, which makes it impracticable in high-dimensional
systems, is the huge computational load and storage requirements associated with the
propagation of the error covariance matrix. In recent years, several so-called suboptimal
schemes [10] have been formulated which use different approximations of the error covariance
modelling to reduce the computational burden.

Most suboptimal schemes are based on either a simplification of the model dynamics for
propagation of the errors or approximations of the error covariance matrix. An example of the
former approach can be found in Dee [11] who applied a simplified Kalman filter in an
atmospheric flow model where the mass error propagation is obtained by simple advection,
and the wind error propagation is subsequently evaluated by imposing geostrophic balance in
the momentum equations. An alternative approach consists of propagating the error covari-
ance matrix in a coarser grid than is used for propagation of the model itself [12]. Cohn and
Todling [13] proposed a method where a reduced rank approximation of the singular value
decomposition of the tangent linear operator is applied in the extended Kalman filter.
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With respect to the approximation of the error covariance matrix, a significant reduction of
the computational burden can be achieved by applying a steady state Kalman filter, where the
Kalman gain can be calculated off-line. Examples of application of the steady state filter in
coastal area modelling can be found in References [2,14,15]. The steady state filter prescribes
time invariant error statistics and fixed measurement positions which may cause severe
restrictions on the applicability of the method. For time varying Kalman filtering, an efficient
scheme based on a reduced rank approximation of the error covariance matrix has been
introduced. In this case, the error covariance matrix is approximated by a matrix of lower
rank, including only the few, most significant eigenvectors of the matrix. Cohn and Todling
[13] used this approach together with a Lanczos algorithm for the eigenvalue decomposition,
whereas Verlaan and Heemink [16] used a square root factorisation. The reduced rank square
root filter has been applied in coastal area modelling by Heemink et al. [15], Verlaan and
Heemink [16], and Cañizares et al. [17,18].

The extended Kalman filter may provide poor results in the case of strongly non-linear
dynamics. For instance, Evensen [19] found that the extended Kalman filter for a non-linear
quasi-geostrophic ocean model resulted in an unbounded error covariance growth. Obviously,
the extended Kalman filter can be improved by including higher-order moments in the error
covariance approximation. However, in practice, for large systems this approach is not feasible
since the computational load and storage requirements become overwhelming. To resolve the
non-linearities in the error propagation, Evensen [20] introduced an ensemble Kalman filter
approach based on Monte Carlo simulations. In this method, the error covariance matrix is
represented by an ensemble of possible states that are propagated according to the full
non-linear dynamics of the system. Evensen and van Leeuwen [21] applied the ensemble
Kalman filter for assimilation of altimeter data in a quasi-geostrophic ocean model.

The objective of the present paper is to test and compare the reduced rank square root
algorithm based on an extended Kalman filter formulation (RRSQRT KF) and the ensemble
Kalman filter (EnKF) for assimilation of water level measurements in an existing two-
dimensional hydrodynamic model (MIKE 21). In Section 2, the applied numerical model is
briefly described. Based on a stochastic representation of the model and the measurement
equations, the RRSQRT KF and EnKF algorithms are formulated in Section 3. In Section 4,
results from an application of the two methods in a twin experiment based on a hypothetical
bay region are presented. Finally, conclusions are given in Section 5.

2. HYDRODYNAMIC MODEL

The MIKE 21 hydrodynamic model is a general numerical modelling system for the simulation
of unsteady two-dimensional flow, developed at the Danish Hydraulic Institute [22]. The basic
partial differential equations (PDE) are the depth integrated continuity and momentum
equations (shallow water equations)
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where x, y are the horizontal co-ordinates (m); t is the time (s); h is the water depth (m); j is
the surface elevation (m); p, q are the flux densities in the x- and y-directions (m3 s−1 m−1),
(p, q)= (nxh, nyh), where nx and ny are the depth averaged x and y velocities (m s−1); g is the
acceleration due to gravity (m s−2); C is the Chezy bed resistance coefficient (m1/2 s−1); V is
the Coriolis parameter (s−1); f is the wind friction factor; V, Vx, Vy are the wind speed and
wind speed components in the x- and y-directions (m s−1); pa is the atmospheric pressure
(kg m−1 s−2); and rw is the density of water (kg m−3).

At closed boundaries the flow perpendicular to the boundary is set to zero. At open
boundaries the surface elevation is prescribed. Owing to the non-linearity of the dynamics, a
secondary boundary condition has to be imposed at open boundaries in order to close the
solution. In MIKE 21 fluxes along the open boundary has to be specified, and in this respect
three different options are available: (1) the flux is set to zero, (2) the flux is obtained by
extrapolation in space, and (3) the flow direction is specified, implying that the flux can be
computed internally by MIKE 21. With the defined boundary conditions and with prescribed
initial values of surface elevations and flux densities, (1)–(3) form a well-posed boundary value
problem.

MIKE 21 uses a finite difference approximation to solve the PDEs where the difference
terms are expressed on a staggered grid. A time-centred alternating direction implicit (ADI)
scheme is adopted. The equations are solved in one-dimensional sweeps, alternating between
the x- and y-directions. In the x-sweep, the continuity equation and the momentum equation
in the x-direction are solved with respect to j at time step k+1

2 and p at time step k+1 using
the known variables jk, pk, qk−1/2 and qk+1/2. In the y-sweep, the continuity equation and the
momentum equation in the y-direction are solved with respect to jk+1 and qk+3/2 using jk+1/2,
qk+1/2, pk and pk+1.

3. KALMAN FILTER

3.1. Kalman filter update

For the implementation of the Kalman filter in MIKE 21, the numerical model has to be
formulated in a state–space form. The state variables to be considered are surface elevations
and the depth averaged x and y velocities in every point of the horizontal grid. The Kalman
filter algorithm is based on a recursive two-time step formulation. The numerical scheme in
MIKE 21, however, involves the y velocity at three time steps. To express this scheme using
only two time steps, the y velocity at time steps k+1

2 and k−1
2 are included in the state vector.

The numerical scheme based on (1)–(3) can then be written as

xk=F(xk−1, uk), (4)

where xk= (jk, nx,k, ny,k+1/2, ny,k−1/2) is the state vector, and uk is the forcing of the system in
terms of the surface elevations at open boundaries, and the meteorological forcing components
in the momentum equations (wind stress and pressure gradient).

For modelling the uncertainty of the system, it is assumed that model errors are mainly
related to errors in the forcing terms. At open boundaries, the tidal component of the surface
elevation can usually be obtained with a relatively high accuracy, whereas the variations due
to the meteorological effects may contain large errors (e.g. due to generation of a surge outside
the model domain). The errors in the meteorological forcing terms are partly caused by
uncertainties of the meteorological observations, and partly related to the physical description
of the wind stress component and determination of the wind friction factor.
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The error processes are assumed to be less spatially variable than the water flow process [14],
and the discrete error processes can thus be defined on a grid G2, which is coarser than the
model grid G1. A stochastic representation of the system equation (4) can then be written

xk=F(xk−1, uk+Lok), (5)

where ok contains the model error in every grid point of G2, and L is a matrix that represents
the sequence of linear interpolations between G2 and G1. The model error process is assumed
unbiased, and the error statistics (variance structure as well as spatial and temporal correlation
structure) are assumed known.

Measurements zk of the state of the system are assumed to be available at certain points in
the model grid G1. Measurement errors are partly related to the measurement equipment, and
partly related to the uncertainty caused by the use of point measurements to represent grid
averages. The stochastic representation of the measurement equation reads

zk=Ckxk+hk, (6)

where Ck is a matrix that describes the relation between measurements and state variables, and
hk is a random measurement error with zero mean and known covariance matrix Rk.

Now, a one-step ahead forecast of the state of the system is denoted by xk
f , according to the

model operator F(�), cf. Equation (4). The uncertainty of this forecast is described by the error
covariance matrix Pk

f . If measurements are available, cf. Equation (6), the model forecast and
the measurements can be combined to obtain an updated estimate of the state of the system.
The Kalman filter update of the state vector and the error covariance matrix are given by

xk
a=xk

f +Kk(zk−Ckxk
f ), (7)

Pk
a=Pk

f −KkCkPk
f , (8)

where Kk is the Kalman gain matrix,

Kk=Pk
f Ck

T[CkPk
f Ck

T+Rk ]−1, (9)

which serves as a weighting function of the model forecast and measurements and depends on
the associated errors Pk

f and Rk. In Equations (7)–(9), superscripts f and a refer to forecast and
analysis (or update) respectively.

The forecast error covariance matrix Pk
f is a combination of time propagation of Pk−1

a and
forcing of the system by model errors. For large systems, the propagation of the errors is the
main bottleneck, imposing an unacceptable computational burden. Let n denote the dimension
of the state vector (in the order 103–105 in models of realistic complexity), the propagation of
the error covariance matrix requires 2n as much computing effort as is required to advance the
deterministic model. The Kalman filter algorithms described below represent two different
approaches for approximating the error covariance propagation that significantly reduces the
computational burden.

3.2. Reduced rank square root filter

In the extended Kalman filter, the propagation of the error covariance matrix is based on
a statistical linearisation of the model dynamics. In the case of a white system noise process,
the forecast step is given by

xk
f =F(xk−1

a , uk), (10)
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Pk
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where Qk is the covariance matrix of the system noise, defined on grid G2.
The RRSQRT approximation of the extended Kalman filter uses a square root algorithm as

well as a lower rank approximation of the error covariance matrix. Denote by Sk−1
a the

approximation of rank M of the square root of the error covariance matrix Pk−1
a . The

propagation of the error covariance matrix is then given by

Sk
f = [FkSk−1

a �GkLQk
1/2], (12)

where Qk
1/2 is the square root of Qk. The matrix Sk−1

a has M columns, where M is chosen much
smaller than the dimension n of the state vector. To calculate the derivatives in Fk and Gk, a
finite difference approximation of F(�) is adopted. Thus, the propagation of the error
covariance matrix requires M plus q (the total number of noise points) model integrations,
which is much smaller than the 2n integrations required in (11).

The propagation step in (12) increases the number of columns in the error covariance matrix
from M to M+q. To reduce the number of columns, and hence keep the rank of the matrix
constant throughout the simulation, a lower rank approximation of Sk

f in (12) is applied by
keeping only the M leading eigenvectors of the error covariance matrix. The reduction can be
achieved either by a singular value decomposition of Sk

f or by an eigenvalue decomposition of
the matrix (Sk

f )T Sk
f [16,18].

Based on the square root approximation of rank M, Sk
f , the error covariance matrix can be

calculated as Pk
f =Sk

f (Sk
f )T, and subsequently used for the Kalman filter update, cf. Equations

(7)–(9). The expensive matrix multiplication, however, can be reduced significantly when the
data assimilation is based on in situ measurements that are sparsely represented in space. In
this case, the measurement matrix Ck has only a few non-zero elements, and only the columns
in Pk

f that corresponds to the non-zero elements in Ck have to be calculated. Furthermore, if
measurement errors are uncorrelated, a sequential updating algorithm that process one
measurement at a time can be implemented [23], and hence avoiding the matrix inversion in
(9). In this case, it is not necessary to calculate the forecast error covariance matrix, and the
sequential updating can be performed using Sk

f directly (see details in Cañizares et al. [18]).
In the case of coloured (time correlated) system noise, the Kalman filter is defined by using

an augmented state vector that includes the system noise components. Assuming that the noise
process at time step k, ok, only depends on the previous time step k−1, the augmented
stochastic model equation can be written as�xk

ok

�
=
�F(xk−1, uk+Lok)

Aok−1+dk

�
, (13)

where A represents the correlation model, and dk is a white noise process with covariance
matrix Qk. The propagation of the error covariance matrix corresponding to the augmented
state vector is now given by

Sk
f*=

�Sk
f

Sk
f

�
=
��Fk

0
GkL

A
��Sk−1

a

Sk−1
a

�)� 0
Q1/2

�n
. (14)

To solve (14), a finite difference approximation of F(�) is adopted that requires M model
integrations [24]. Since the augmented state vector contains variables with different scales of
magnitude, Sk

f* is normalised prior to the eigenvalue decomposition [24].
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3.3. Ensemble Kalman filter

In the ensemble Kalman filter [20], the statistical properties of the state vector are
represented by an ensemble of possible state vectors. Each of these vectors is propagated
according to the dynamic system subjected to model errors, and the resulting ensemble then
provides estimates of the forecast state vector and the error covariance matrix. In the
measurement update, the Kalman gain matrix obtained from (9) is applied for each of the
forecast state vectors. To account for measurement errors, the measurements are represented
by an ensemble of possible measurements [25]. The resulting updated sample provides
estimates of the updated state vector and the error covariance matrix. The ensemble Kalman
filter can thus be summarised as follows:

1. Each member of the ensemble of M state vectors is propagated forward in time according
to the dynamics of the system and the specified model error, i.e.

xi,k
f =F(xi,k−1

a , uk+Loi,k), i=1, 2, . . . , M, (15)

where the model error oi,k is randomly drawn from a predefined distribution with zero mean
and covariance matrix Qk.

2. In general, the forecast of the state vector can be calculated as a certain quartile of the
ensemble forecast. Usually, the mean value is adopted, i.e.

x̂k
f = x̄k

f =
1
M

%
M

i=1

xi,k
f . (16)

The error covariance matrix of the forecast is then estimated from the ensemble as

Pk
f =Sk

f (Sk
f )T, Si,k

f =
1


M−1
(xi,k

f − x̄k
f ), (17)

where Si,k
f is the ith column in Sk

f .
3. An ensemble of size M of possible measurements is generated

zi,k=zk+hi,k, i=1, 2, . . . , M, (18)

where zk is the actual measurement vector and hi,k is the measurement error that is
randomly generated from a predefined distribution with zero mean and covariance matrix
Rk.

4. Each ensemble member is updated according to the updating scheme in (7), and based on
the updated ensemble, the updated state vector and error covariance matrix are estimated,
cf. Equations (16) and (17).

For uncorrelated measurement errors, a sequential updating scheme similar to the one
described above can be applied using Sk

f directly [26], and hence avoiding the expensive
calculation of Pk

f in (17) and the matrix inversion in (9).
For time coloured system noise the EnKF can be defined using an augmented state vector

formulation. In this case, an ensemble of model errors are propagated according to the
correlation model

o i,k
f =Ao i,k−1

a +di,k, i=1, 2, . . . , M, (19)

where di,k is randomly drawn from a predefined distribution with zero mean and covariance
matrix Qk.
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The main features of the RRSQRT KF and EnKF algorithms are shown in Table I for
comparison.

4. EXPERIMENTS

4.1. Test layout

To evaluate the performance of the RRSQRT KF and the EnKF data assimilation schemes,
a twin experiment was carried out. A hypothetical bay with a grid of 21×20 points, and a grid
size of 10×10 km2 was used. The model bathymetry is shown in Figure 1. The Chezy bed
resistance coefficient varies with the depth, representing values in the range 30–45 m1/2 s−1

(largest values in the deepest areas). The flow is forced by a sinusoidal variation of the surface
elevation at the open northern boundary with a period of 12 h and an amplitude range of 2
m. Meteorological forcing is included using wind and pressure fields from an artificially
generated moving cyclone that moves in a west–east direction with a speed of 50 km per 6 h
(see Figure 2). The main flow describes a Kelvin wave moving anti-clockwise in the bay region.

It is assumed that model errors are correlated in time according to a first-order auto-
regressive process, i.e.

ok=aok−1+dk, o0=0, (20)

where a is the lag-one auto-correlation coefficient, and dk is a Gaussian white noise component
with zero mean and prescribed covariance structure. It is assumed here that the model error
covariance is constant in time and that the spatial correlation structure can be described by an
exponential model, i.e. the covariance matrix Q has the elements

Qij=r
dijssissj, (21)

where s si
2 is the variance of the ith element in dk, r is the correlation coefficient between two

elements of dk separated by a unit distance, and dij is the distance between nodes i and j. The
measurement errors are assumed to be independent of the model errors, mutually uncorrelated
and homogeneous in time, i.e. the covariance matrix reads

R=diag[dm1
2 , . . . , smp

2 ], (22)

Table I. Summary of the EnKF and RRSQRT KF algorithms

RRSQRT KFEnKF

Ensemble estimateModel forecast Deterministic model forecast
Propagation of error covariancePropagation of ensembleError propagation
matrix using tangent linearaccording to full non-linear

model dynamics model operator
Part of ensemble propagation Matrix algebraModel error forcing
Ensemble estimate Reduced rank approximation ofRepresentation of error

square root of covariance matrixcovariance matrix
Storage requirements M×(n+q) (M+q)×(n+q)

M model integrationsM model integrationsComputational costs
Eigenvalue decomposition

M is the ensemble size in the EnKF and the number of leading eigenvalues in the RRSQRT KF; n is the number
of state variables; q is the number of noise points.
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Figure 1. Bathymetry of hypothetical bay (depth in m). Dots indicate measurement locations.

where smi
2 , i=1, 2, . . . , p is the variance of the error of the ith measurement.

The reference state (true state) of the system is simulated using the deterministic model with
the sinusoidal boundary and meteorological forcing described above. A simulation time of 48
h with a time step of 15 min is used. Water level measurements are extracted from the true
state simulation and disturbed by adding random errors generated from a Gaussian distribu-
tion with covariance matrix Rk, cf. Equation (22). Three measurement locations are consid-
ered, grid points (1, 16), (8, 1) and (20, 12) respectively (Figure 1). A wrong state of the system
is simulated by adding errors to the forcing terms. The Kalman filter update is obtained by
assimilating water level measurements from the three locations into the wrong model forecast
in every time step.

The performance of the two Kalman filter updating schemes is evaluated by comparing the
root mean square error (r.m.s.e.) between the true and updated surface elevations fields. To
compare the error covariance estimates of the two filters, the spatial distribution of the average
standard deviation (S.D.) of the surface elevations is calculated. To minimise the influence
from the initial conditions, the r.m.s.e. and S.D.s are calculated using results only from the last
24 h of simulation. Global performance measures are calculated as spatial averages of the
r.m.s.e. and the S.D.

4.2. Errors in open boundaries

First, errors in the open boundary are considered. Errors in the surface elevations at the
open boundary are randomly generated from a first-order auto-regressive process, cf. Equation
(20), with a lag-one auto-correlation coefficient a=0.9. The residuals are generated from a
Gaussian distribution with covariance matrix given by (21) with a constant S.D. ss=0.1 m,

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 961–981 (1999)
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and spatial correlation coefficient r=0.9. The r.m.s.e. of the wrong model is shown in Figure
3. The random measurement errors are generated using smi=0.05 m at all locations.

In the first test, the two Kalman filters were applied using the true error statistics (i.e. the
statistics used to generate the random errors in the model forcing). When the filters are
provided with the true error statistics, the error covariance estimate should be close to the
r.m.s.e., any differences being caused by the applied approximations in the Kalman filter
schemes. The performance of the RRSQRT KF generally depends on the rank of the square
root approximation of the error covariance matrix (number of leading eigenvalues used to
define the matrix). Similarly, the performance of the EnKF depends on the ensemble size. The
number of leading eigenvalues and the ensemble size (both denoted M in the following) are
important parameters to control since they determine the computational load and storage
requirements.

In Figure 4 the average r.m.s.e. and S.D. are shown for different numbers of leading
eigenvalues in the RRSQRT KF and ensemble sizes in the EnKF. For small M, the updating
schemes are not very efficient (large r.m.s.e.), and, in addition, the S.D. is underestimated. For
both filters, the r.m.s.e. decreases and the S.D. increases for increasing M. For M smaller than
about 100, the r.m.s.e. of the RRSQRT KF is smaller than that of the EnKF, whereas for
larger M the r.m.s.e. of the two filters are virtually identical. The S.D. is slightly larger for the
RRSQRT KF.

The main difference between the two filters is related to the convergence conditions. For the
RRSQRT KF the r.m.s.e. stabilises around M=40, whereas the EnKF requires an ensemble
size of about M=100 to obtain convergence. Thus, the reduced rank approximation of the
error covariance matrix in the RRSQRT KF is more efficient than the ensemble representation

Figure 2. Generated cyclonic wind (m s−1) and pressure fields (hPa) after 30 h.
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Figure 3. Spatial distribution of r.m.s.e. (cm) of the wrong model.

in the EnKF. This feature is due to the fact that the RRSQRT KF considers only the most
significant eigenvectors of the error covariance matrix, i.e. noise in the error representation is
filtered out in every time step. The performance of the EnKF, especially for small ensemble

Figure 4. Spatial average r.m.s.e. and S.D. as a function of the number of leading eigenvalues in the RRSQRT KF
and the ensemble size in the EnKF.
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sizes, can be improved by limiting the sampling space. In this case, the random sampling of the
residual model error dk is performed within an hyperellipsoid that encloses the value of dk with
probability p, i.e.

d i,k
T Qk

−1di,k5xq
2(p), (23)

where xq
2(p) is a x2 variable with q degrees of freedom (dimension of the noise vector) and

probability p. By reducing the random sampling space, the noise in the error representation,
which is especially pronounced for small ensemble sizes, can be reduced. However, reduction
of the sampling space also introduces an underestimation of the true error covariance matrix,
and hence, one should not apply too severe limitations.

The computational load of the two filters for different values of M is shown in Figure 5. For
the EnKF, the computational load corresponds roughly to the load of M model integrations.
For the RRSQRT KF the computational load is highly dependent on the eigenvalue
decomposition, which becomes relatively more expensive for increasing M. In the present case,
the computational load for the RRSQRT KF with M=50 is virtually identical to the load for
the EnKF with an ensemble size of M=100. Thus, in this case the same performance is
achieved for almost the same computational costs.

In Figure 6, the r.m.s.e. and S.D. are shown for the RRSQRT KF with M=40 and for the
EnKF with M=100. Assimilation of surface elevations in the three measurement positions
reduces significantly the RMSE in most parts of the area, except for points close to the open
boundary (compare with the r.m.s.e. of the wrong model in Figure 3). The spatial distribution
of the r.m.s.e. and the S.D. are very similar for the two filters. Moreover, both filters provide
estimates of the S.D. that are very close to the observed r.m.s.e., indicating that the error
propagation in the filter is sufficiently resolved.

The general performance and convergence of the filters depend on the definition of the
coloured noise. Different tests were performed using the same layout as above but with

Figure 5. Computational load of the RRSQRT KF and the EnKF, in terms of model run equivalents, as a function
of the number of leading eigenvalues and ensemble size respectively.
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Figure 6. Left: r.m.s.e. (cm) (top) and S.D. (cm) (bottom) for the RRSQRT KF. Right: r.m.s.e. (top) and S.D.
(bottom) for the EnKF.

different values of the lag-one auto-correlation coefficient. For smaller correlations, the r.m.s.e.
converges for larger values of M. In addition, the filter becomes less efficient in the sense that
the reduction of the global r.m.s.e. is smaller. Thus, the use of coloured noise implies a
numerically more efficient algorithm as well as a better performance of the filter.

In practice, the model error structure and error statistics are unknown, or only partly
known, and hence an important property of the Kalman filter is its robustness with respect to
specification of the model error. A number of sensitivity tests have been carried out, applying
the filters on the wrong model as defined above but using different error statistics (i.e. varying
a, ss, r, smi). Generally, when the error statistics are not correctly specified, the performance
of the filters deteriorates. However, the filters are in most cases very robust, implying a
reduction of the r.m.s.e. in the same order as the reduction obtained by the filters based on the
true statistics. The estimated S.D. is more sensitive to the definition of the error statistics,
implying a severe under or overestimation when the error statistics are grossly misspecified.
With respect to definition of the error statistics the stability of the filter is another important
issue. When the uncertainty of the measurements is very small compared with the model

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 961–981 (1999)



H. MADSEN AND R. CAN0 IZARES974

uncertainty, the RRSQRT KF becomes unstable. The EnKF does not have any stability
problems in this case, although it produced poor results.

All the tests considered above have been based on unbiased model errors in accordance with
the basic assumption of the Kalman filter. To evaluate the performance of the filters in the
case of biased model errors, different tests were carried out where the introduced error at the
open boundary is a combination of a random error and a systematic error, i.e. an error in the
phase or in the amplitude. As an example, the r.m.s.e. of the wrong model, including a phase
error of 1 h is shown in Figure 7. Generated model errors are very large in this case with an
average r.m.s.e. of 90.7 cm. The two filters were applied using the parameters a=0.9, r=0.9,
ss=0.1 m, smi=0.05 m, M=40 for the RRSQRT KF, and M=100 for the EnKF. Both
filters provide very large reductions of the r.m.s.e., reducing the average to respectively 9.3 cm
for the RRSQRT KF and 9.7 cm for the EnKF. The performance of the filters in this case is
highly dependent on the definition of coloured noise. The spatial distribution of the r.m.s.e. of
the EnKF using coloured (a=0.9) and white noise respectively is shown in Figure 8. In the
case of white noise, larger r.m.s.e. are observed, with an average equal to 22.6 cm. When
coloured noise is applied, the Kalman filter provides estimates of the model error (augmented
part of the updated state vector, cf. Equation (13)), and hence the surface elevation at the open
boundary is updated along with the state variables. The tests have shown that the Kalman
filter with coloured noise is very efficient in tracking phase and amplitude errors at the open
boundary.

Figure 7. Spatial distribution of r.m.s.e. (cm) of the wrong model, including a phase error of 1 h at the open
boundary.
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Figure 8. Spatial distribution of r.m.s.e. (cm) of the EnKF using coloured (top) and white noise (bottom) respectively.
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4.3. Errors in meteorological forcing

The performance of the filters in the case of errors in the meteorological forcing terms has
been tested using the same true model and measurements as defined above. A wrong model
was simulated by adding randomly generated errors to the meteorological forcing terms using
the following noise statistics: a=0.97, r=0.98 and ss=0.00025 m2 s−2 (correlation parame-
ters are taken from [14]). The r.m.s.e. of the wrong model in this case is shown in Figure 9.
Compared with the wrong model based on disturbed boundary conditions, the error growth is
more severe in the SW and SE parts of the region. Since the open boundary is assumed perfect,
only very small errors are present close to the boundary.

Different simulations were performed to test the convergence and sensitivity of the two
filters. Compared with the case with errors in the open boundaries, generally a larger number
of leading eigenvalues in the RRSQRT KF and a larger ensemble size in the EnKF are
necessary to obtain convergence. When the filters are provided with the noise statistics used to
generate the wrong model, the RRSQRT KF converges for M about 70, whereas the EnKF
requires an ensemble size of M=200 to obtain convergence. In this case, the two algorithms
have virtually the same computational load. In Figure 10 the r.m.s.e. and S.D. are shown for
the RRSQRT KF with M=70 and for the EnKF with M=200. Large reductions in the
r.m.s.e. are achieved; the average is reduced from 17.1 cm of the wrong model to 5.0 cm for
both filters. Also, in this case the spatial distribution of the r.m.s.e. and the S.D. are very
similar for the two filters, and both filters provide estimates of the S.D. that are very close to
the observed r.m.s.e.

The performance of the filters is strongly dependent on the definition of the spatial
correlation structure. For smaller spatial correlation coefficients, the filters converge for larger

Figure 9. Spatial distribution of r.m.s.e. (cm) of the wrong model.
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Figure 10. Left: r.m.s.e. (cm) (top) and S.D. (cm) (bottom) for the RRSQRT KF. Right: r.m.s.e. (top) and S.D.
(bottom) for the EnKF.

values of M. Moreover, the reduction of the r.m.s.e. is less pronounced, and for the RRSQRT
KF in some cases even an increase is observed. Thus, in general, a high spatial correlation
should be used to obtain numerically more efficient updating schemes as well as a better model
performance.

To evaluate the performance of the filters in the case of bias in the meteorological forcing,
a test was performed where the wrong model is generated assuming that no wind is present.
This test represents a very extreme case where the Kalman filter is adopted for the model to
generate its own forcing. Figure 11 shows the r.m.s.e. of the wrong model and the updated
model based on the EnKF with a=0.97, r=0.98, ss=0.00025 m2 s−2, and M=200 (the
RRSQRT KF provides virtually similar results). A significant reduction of the r.m.s.e. is
achieved; the average is reduced from 19.3 cm of the wrong model to 5.9 cm of the updated
model. Also in this case, the use of coloured noise is very important for the efficiency of the
updating scheme.
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Figure 11. Spatial distribution of r.m.s.e. (cm) of the wrong model (top) and the updated model based on the EnKF
(bottom).
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5. DISCUSSION AND CONCLUSIONS

Two different data assimilation schemes based on the Kalman filter algorithm have been
implemented into an existing two-dimensional hydrodynamic model. The RRSQRT KF is
based on the extended Kalman filter scheme in which the propagation of the error covariance
matrix is performed using a statistical linearisation of the model dynamics. The error
covariance matrix is approximated by a matrix of lower rank using a square root factorisation.
The EnKF is based on a Monte Carlo simulation approach for propagation of errors,
according to the full non-linear model dynamics. The error covariance matrix is approximated
by the ensemble estimate.

The filtering problem has been formulated by utilising a general description of the model
noise process related to errors in the model forcing, i.e. open boundary conditions and
meteorological forcing. An augmented state vector formulation is adopted for a general
implementation of time coloured model noise. In this case, the Kalman filter provides
corrections of the forcing terms along with corrections of the state of the system during
assimilation.

The performance of the two Kalman filters has been evaluated using a twin experiment
based on a hypothetical bay region. The following conclusions were obtained:

1. The performance of the filters depends on the number of leading eigenvalues for the
RRSQRT KF and the ensemble size for the EnKF. In this case the reduced rank
approximation of the error covariance matrix in the RRSQRT KF is more efficient than
the ensemble representation in the EnKF, implying a smaller number of leading eigenvalues
than ensemble members to obtain the same model performance. The eigenvalue decompo-
sition in the RRSQRT KF, however, implies that the computational load becomes more
expensive than determined by the rank of the error covariance matrix, and hence to a
certain extent balances the additional costs of the EnKF caused by the larger ensemble size.

2. When the filters are provided with the true noise statistics, the estimated error covariance
closely resembles the observed r.m.s.e. by using only relatively few leading eigenvalues in
the RRSQRT KF and ensemble members in the EnKF as compared with the dimension of
the state vector. Thus, for both filters, the error covariance approximation sufficiently
resolves the error propagation in the model at a computational load that is significantly
smaller than required by the full Kalman filter algorithm.

3. The efficiency of the Kalman filter generally depends on the prescribed error statistics. In
practical applications error statistics are never known with certainty, and hence the
robustness of the Kalman filter with respect to the specification of the error statistics is
important. The tests revealed that both filters are very robust. Even in the case of a severe
biased model error, the filters are able to efficiently correct the wrong state. The estimation
of the error covariance was seen to be more sensitive with respect to the definition of the
error statistics.

4. In general, the use of coloured noise provides a numerically more efficient algorithm as well
as a better performance of the filter. The use of coloured noise is especially important for
tracking and correcting biased model errors. In the case of errors in the meteorological
forcing, a high spatial correlation generally leads to more efficient updating schemes.

In the test examples presented herein both filters have shown to provide very efficient updating
schemes. However, since the RRSQRT KF is based on an extended Kalman filter formulation,
it is expected to work well only for weakly non-linear dynamics. For strongly non-linear
dynamics, the RRSQRT KF may fail. The EnKF does not have this limitation and it is
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expected to be particularly useful when large non-linearities and discontinuities are present,
e.g. in the case of flooding and drying of tidal areas. Thus, for general applications, the EnKF
seems to be the most appropriate method. On the other hand, the error covariance approxima-
tion in the RRSQRT KF has shown to be very efficient since it focuses only on the most
important eigenvalues of the error covariance matrix, and hence is able to filter out noise in
the error representation. Application of a hybrid Kalman filter scheme that combines the
reduced rank approximation of the error covariance matrix in the RRSQRT KF and the
Monte Carlo based error propagation in the EnKF is presently being investigated.

ACKNOWLEDGMENTS

This work was funded by the Danish National Research Foundation through the International
Research Centre for Computational Hydrodynamics.

REFERENCES

1. M. Ghil and P. Malanotte-Rizzoli, ‘Data assimilation in meteorology and oceanography’, Ad6. Geophys., 33,
141–266 (1991).

2. H.J. Vested, J.W. Nielsen, H.R. Jensen and K.B. Kristensen, ‘Skill assessment of an operational hydrodynamic
forecast system for the North Sea and Danish Belts’, in D.R. Lynch and A.M. Davies (eds.), Quantitative Skill
Assessment for Coastal Ocean Models, Coast. Estuar. Studies, 47, 373–396 (1995).

3. W. Thacker and R.B. Long, ‘Fitting dynamics to data’, J. Geophys. Res., 93, 1227–1240 (1988).
4. R.W. Lardner, A.H. Al-Rabeh and N. Gunay, ‘Optimal estimation of parameters for a two-dimensional

hydrodynamical model of the Arabian Gulf’, J. Geophys. Res., 98, 18229–18242 (1993).
5. M. Eknes and G. Evensen, ‘Parameter estimation solving a weak constraint variational formulation for an Ekman

model’, J. Geophys. Res., 102, 12479–12492 (1997).
6. A.C. Lorenc, ‘A global three-dimensional multivariate statistical interpolation scheme’, Mon. Weather Re6., 109,

701–721 (1981).
7. R. Daley, Atmospheric Data Analysis, Cambridge University Press, Cambridge, UK, 1991.
8. M.M. Rienecker and R.N. Miller, ‘Ocean data assimilation using optimal interpolation with a quasi-geostrophic

model’, J. Geophys. Res., 96, 15093–15103 (1991).
9. R.E. Kalman, ‘A new approach to linear filter and prediction theory’, J. Basic Eng., 82D, 35–45 (1960).

10. R. Todling and S.E. Cohn, ‘Suboptimal schemes for atmospheric data assimilation based on the Kalman filter’,
Mon. Weather Re6., 122, 2530–2557 (1994).

11. D.P. Dee, ‘Simplification of the Kalman filter for meteorological data assimilation’, Q. J. R. Meteorol. Soc., 117,
365–384 (1991).

12. I. Fukumori and P. Malanotte-Rizzoli, ‘An approximate Kalman filter for ocean data assimilation: an example
with an idealized Gulf Stream model’, J. Geophys. Res., 100, 6777–6793 (1995).

13. S.E. Cohn and R. Todling, ‘Approximate data assimilation schemes for stable and unstable dynamics’, J.
Meteorol. Soc. Jpn., 74, 63–75 (1996).

14. A.W. Heemink, ‘Identification of wind stress on shallow water surfaces by optimal smoothing’, Stochastic Hydrol.
Hydraul., 4, 105–119 (1990).

15. A.W. Heemink, K. Bolding and M. Verlaan, ‘Storm surge forecasting using Kalman filtering’, J. Meteorol. Soc.
Jpn., 75, 305–318 (1997).

16. M. Verlaan and A.W. Heemink, ‘Tidal flow forecasting using reduced rank square root filters’, Stochastic Hydrol.
Hydraul., 11, 349–368 (1997).
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